https://ri.ria.ru/20240919/nauka-1973370160.html
Российские ученые ускорили диагностику эпилепсии
Российские ученые ускорили диагностику эпилепсии - РИА Новости, 23.09.2024
Российские ученые ускорили диагностику эпилепсии
Метод автоматизированного анализа эпилептических приступов разработали ученые БФУ. По их мнению, в отличие от существующих систем, новый подход учитывает... РИА Новости, 23.09.2024
2024-09-19T09:00
2024-09-19T09:00
2024-09-23T12:00
наука
россия
балтийский федеральный университет
наука
университетская наука
российские инновации
качество жизни
здоровье
https://cdnn21.img.ria.ru/images/07e8/09/12/1973365099_0:0:3641:2048_1920x0_80_0_0_9225884a7a68a226128c00bdab2e90ef.jpg
МОСКВА, 19 сен — РИА Новости. Метод автоматизированного анализа эпилептических приступов разработали ученые БФУ. По их мнению, в отличие от существующих систем, новый подход учитывает особенности "сырых" клинических данных и позволяет быстрее поставить пациенту диагноз. Исследование опубликовано в журнале The European Physical Journal Special Topics.Эпилепсия — хроническое неврологическое заболевание, проявляющееся в предрасположенности организма к внезапному возникновению судорожных приступов. По данным ВОЗ, эпилепсия является одним из самых распространенных неврологических заболеваний в мире; ею страдают порядка 50 миллионов человек. До 70% людей с эпилепсией могут жить без приступов болезни при условии обеспечения надлежащей диагностики и лечения.Одной из ключевых задач в диагностике эпилепсии является определение типа приступа и его причин. Обычно для этого пациенту необходимо пройти долгое (до нескольких дней) наблюдение в стационаре, в течение которого регистрируется активность головного мозга с помощью электроэнцефалографии (ЭЭГ). После этого врач приступает к анализу полученных данных, вручную выявляя признаки эпилепсии, что требует значительных временных затрат и может существенно влиять на объективность результатов.Ученые Балтийского федерального университета имени Иммануила Канта (БФУ) предложили новый подход к диагностике эпилепсии, основанный на использовании каскадной системы, которая объединяет искусственный интеллект (ИИ) и экспертные знания о физиологии эпилепсии. По их словам, данный метод позволяет существенно повысить точность обнаружения эпилептических приступов на электроэнцефалограммах."Разработка выполняет предварительный анализ записи, помечая участки, которые могут содержать эпилептические приступы. Затем врач изучает отмеченные системой участки, подтверждая или опровергая ее выводы", — пояснил старший научный сотрудник Балтийского центра нейротехнологий и искусственного интеллекта БФУ имени И. Канта Вадим Грубов.При этом он выразил мнение, что благодаря такому сочетанию автоматического анализа и экспертной оценки врача удается достичь высокой точности диагностики при значительном сокращении времени исследования (до 90-95%).Авторы исследования полагают, что полученные результаты могут облегчить работу врачей-эпилептологов и найти применение в клинической практике в рамках систем поддержки принятия врачебных решений (СППВР).Как отметили в пресс-службе БФУ, преимущество разработки ученых заключается в том, что обучение системы проводилось на реальных и максимально "сырых" клинических данных. Это, по мнению экспертов, значительно повышает ее надежность в практическом применении. При разработке системы были учтены особенности эпилептических приступов, знания о работе головного мозга и различных протекающих в нем процессах."Другие исследователи часто стремятся к полной автоматизации диагностики эпилепсии с помощью машинного обучения, создавая системы, способные заменить врача. Однако разнообразие проявлений эпилепсии и ограниченность обучающих данных, часто представляющих собой "идеализированные" лабораторные данные, приводят к недостаточной надежности таких систем в реальных клинических условиях", — отметил Вадим Грубов.Кроме того, по его мнению, сложность интерпретации моделей машинного обучения препятствует их широкому применению в медицине, где прозрачность принятия решений является критическим фактором.В ходе исследования использовались методы глубокого обучения, а именно сверточные нейронные сети, которые широко применяются для классификации изображений.На данном этапе перед учеными стоит задача тестирования других подходов в рамках машинного обучения, которые потенциально могут повысить качество детектирования приступов эпилепсии. Также планируется апробация предложенного метода на большом объеме клинических данных и разработка СППВР на его основе.Работа выполнена в рамках программы "Приоритет 2030" национального проекта "Наука и университеты".
https://ria.ru/20240819/nauka-1966246628.html
https://ria.ru/20240827/nauka-1968102496.html
https://ria.ru/20240820/nauka-1967028034.html
россия
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2024
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ri.ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/07e8/09/12/1973365099_54:0:2785:2048_1920x0_80_0_0_cd6f5dfe28106f67688c14da93a98a4c.jpgРИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
россия, балтийский федеральный университет, наука, университетская наука, российские инновации, качество жизни, здоровье, медицина, диагностика
Наука, Россия, Балтийский федеральный университет, Наука, Университетская наука, Российские инновации, Качество жизни, Здоровье, Медицина, диагностика
МОСКВА, 19 сен — РИА Новости. Метод автоматизированного анализа эпилептических приступов разработали ученые
БФУ. По их мнению, в отличие от существующих систем, новый подход учитывает особенности "сырых" клинических данных и позволяет быстрее поставить пациенту диагноз. Исследование
опубликовано в журнале The European Physical Journal Special Topics.
Эпилепсия — хроническое неврологическое заболевание, проявляющееся в предрасположенности организма к внезапному возникновению судорожных приступов. По данным ВОЗ, эпилепсия является одним из самых распространенных неврологических заболеваний в мире; ею
страдают порядка 50 миллионов человек. До 70% людей с эпилепсией могут жить без приступов болезни при условии обеспечения надлежащей диагностики и лечения.
Одной из ключевых задач в диагностике эпилепсии является определение типа приступа и его причин. Обычно для этого пациенту необходимо пройти долгое (до нескольких дней) наблюдение в стационаре, в течение которого регистрируется активность головного мозга с помощью электроэнцефалографии (ЭЭГ). После этого врач приступает к анализу полученных данных, вручную выявляя признаки эпилепсии, что требует значительных временных затрат и может существенно влиять на объективность результатов.
Ученые Балтийского федерального университета имени Иммануила Канта (БФУ) предложили новый подход к диагностике эпилепсии, основанный на использовании каскадной системы, которая объединяет искусственный интеллект (ИИ) и экспертные знания о физиологии эпилепсии. По их словам, данный метод позволяет существенно повысить точность обнаружения эпилептических приступов на электроэнцефалограммах.
«
"Разработка выполняет предварительный анализ записи, помечая участки, которые могут содержать эпилептические приступы. Затем врач изучает отмеченные системой участки, подтверждая или опровергая ее выводы", — пояснил старший научный сотрудник Балтийского центра нейротехнологий и искусственного интеллекта БФУ имени И. Канта Вадим Грубов.
При этом он выразил мнение, что благодаря такому сочетанию автоматического анализа и экспертной оценки врача удается достичь высокой точности диагностики при значительном сокращении времени исследования (до 90-95%).
Авторы исследования полагают, что полученные результаты могут облегчить работу врачей-эпилептологов и найти применение в клинической практике в рамках систем поддержки принятия врачебных решений (СППВР).
Как отметили в пресс-службе БФУ, преимущество разработки ученых заключается в том, что обучение системы проводилось на реальных и максимально "сырых" клинических данных. Это, по мнению экспертов, значительно повышает ее надежность в практическом применении. При разработке системы были учтены особенности эпилептических приступов, знания о работе головного мозга и различных протекающих в нем процессах.
«
"Другие исследователи часто стремятся к полной автоматизации диагностики эпилепсии с помощью машинного обучения, создавая системы, способные заменить врача. Однако разнообразие проявлений эпилепсии и ограниченность обучающих данных, часто представляющих собой "идеализированные" лабораторные данные, приводят к недостаточной надежности таких систем в реальных клинических условиях", — отметил Вадим Грубов.
Кроме того, по его мнению, сложность интерпретации моделей машинного обучения препятствует их широкому применению в медицине, где прозрачность принятия решений является критическим фактором.
В ходе исследования использовались методы глубокого обучения, а именно сверточные нейронные сети, которые широко применяются для классификации изображений.
На данном этапе перед учеными стоит задача тестирования других подходов в рамках машинного обучения, которые потенциально могут повысить качество детектирования приступов эпилепсии. Также планируется апробация предложенного метода на большом объеме клинических данных и разработка СППВР на его основе.
Работа выполнена в рамках программы "Приоритет 2030" национального проекта "Наука и университеты".